考试要求:
(1)理解平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图. 能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.
(2)掌握直线和平面平行的判定定理和性质定理. 掌握直线和平面垂直的判定定理,掌握直线和平面垂直的判定定理. 掌握三垂线定理及其逆定理.
(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.
(4)了解空间向量的基本定理. 理解空间向量坐标的概念,掌握空间向量的坐标运算.
(5)掌握空间向量的数量积的定义及其性质. 掌握用直角坐标计算空间向量数量积的公式. 掌握空间两点间距离公式.
(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.
(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.
(8)了解多面体、凸多面体的概念.了解正多面体的概念.
(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.
(10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图。
(11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式
10.排列、组台、二项式定理
考试内容:
分类计数原理与分步计数原理.
排列.排列数公式.
组合.组合数公式.组合数的两个性质.
二项式定理.二项展开式的性质.
考试要求:
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.
11.概率
考试内容:
随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.
考试要求:
(1)了解随机事件的发生存在着规律性和随机事件概率的意义.
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.
12.统计
考试内容:
抽样方法.总体分布的估计.
总体期望值和方差的估计.
参考要求: