导航:首页 - MBA联考数学:排列组合与集合的关系

MBA联考数学:排列组合与集合的关系
作者:深圳教育在线 来源:szedu.net 更新日期:2008-10-23

个球与N-1把刀的排列方式(如两把刀排在一起,就表示相应的盒子里球数为0)。所以方法总数为C(M+N-1,N-1)

  例6:7人坐成一排照像, 其中甲、乙、丙三人的顺序不能改变且不相邻, 则共有________排法. 解:甲、乙、丙三人把其他四人分为四部分,设四部分人数分别为X1,X2,X3,X4,其中X1,X4》=0,X2,X3》0 先把其余4人看作一样,则不同排法为方程 X1+X2+X3+X4=4的解的个数,令X2=Y2+1,X3=Y3+1 化为求X1+Y2+Y3+X4=2的非负整数解的个数,这与把2个球装入4个盒子的方法一一对应,个数为C(5,3)=10 由于其余四人是不同的人,所以以上每种排法都对应4个人的全排列4!,所以不同排法共有C(5,3)*4!=240种。 集合的方法运用熟练后,不需要每次具体设定集合,但头脑中要有清晰的对应关系。

[本文共有 2 页,当前是第 2 页] <<上一页 下一页>>


报 名 此 课 程 / 咨 询 相 关 信 息
【预约登门】 【网上咨询】 【订座试听】 【现在报名】
课程名称
MBA联考数学:排列组合与集合的关系
真实姓名
* 性 别
联系电话
* E-mail:
所在地区
咨询内容

      

相关文章:

Copyright© 2004-2010 www.szedu.net 深圳教育在线 版权所有
中国·深圳
粤ICP备06023013号